Effect of Delignification with NaOH and $\mathrm{H}_{2} \mathrm{O}_{2}$ in the Enzymatic Hydrolysis of Sugarcane Bagasse Pretreated by Steam Explosion

Saad, M.B.W.; Ota, E.M.; Silva, E.M.; Rodrigues, M.F.A.; Maiorano, A.E.
Laboratory of Industrial Biotechnology, Institute for Technological Research - IPT, Brazil

This study aimed to evaluate the effect of delignification with NaOH and $\mathrm{H}_{2} \mathrm{O}_{2}$ in the enzymatic hydrolysis yield of sugarcane bagasse pretreated by steam explosion ($\sim 203{ }^{\circ} \mathrm{C} / \sim 6 \mathrm{~min}$). A 2^{2} factorial design was used to study the conditions of delignification in the following ranges: $0.5-10 \% \mathrm{NaOH}(\mathrm{w} / \mathrm{w})$ to $50-$ $150{ }^{\circ} \mathrm{C}$ and 1.0 to $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{w} / \mathrm{w}) 40-100^{\circ} \mathrm{C}$. The tests were performed in a 500 mL Parr reactor with 10% (w/w) of bagasse. The enzymatic hydrolysis of pretreated- and delignified bagasse was performed in a rotating incubator at 50 ${ }^{\circ} \mathrm{C}, \mathrm{pH} 4.8,120 \mathrm{rpm}$ for 24 h with $2 \%(\mathrm{w} / \mathrm{w})$ of bagasse using the NS22074 enzyme complex (Novozymes). Statistical analysis of the delignification results with NaOH showed that the NaOH concentration has a greater effect than temperature on the lignin solubilization $\left(\mathrm{S}_{\mathrm{L}}\right)$ and on enzymatic hydrolysis yield increasing $\left(\mathrm{Y}_{\mathrm{H}}\right)$. The best results were achieved in the condition of $100^{\circ} \mathrm{C}$ with $10 \% \mathrm{NaOH}$, being S_{L} equal to 67.3% and 47.4% for Y_{H} (related to pretreated bagasse). There was an increase in the values of Y_{H} with an increasing in NaOH concentration, which are: $3.7 \%, 17.3 \%$ and 47.4% to $0.5 \%, 5.3 \%$ and $10 \% \mathrm{NaOH} 100^{\circ} \mathrm{C}$, respectively. Overall results of $\mathrm{H}_{2} \mathrm{O}_{2}$ delignification showed that the lignin solubilization under the studied conditions varied little, remaining between 25 and 39%, while in the process with NaOH the range was 4.1 67.3%. The best results of Y_{H} with hydrogen peroxide were obtained under the following conditions: 36.9% with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ at $70{ }^{\circ} \mathrm{C}$ and 41.8% to $25.8 \% \mathrm{H}_{2} \mathrm{O}_{2}$ at $91^{\circ} \mathrm{C}$.

Supported by FAPESP/Oxiteno.

Key-words: Delignification, Enzymatic hydrolysis, Pretreatment, Sugarcane bagasse, Hydrogen peroxide.

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

